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The ability to map changes over large surface areas over time is one of the
advantages in using remote sensing as a monitoring tool, Temporal changes in the
surface may be gradual, making them difficult to detect in the short-term, and because
they commonly occur at the subpixel scale, they may be difficult to detect in the long-
term as well. Also, subtle changes may be real or merely an artifact of image noise. It is,
therefore, necessary to understand the factors that limit the detection of surface materials
in evaluating temporal data. In this study, we evaluated and compared the spectral
detectability of vegetation and soil in the 1990 July and October AVIRIS data of Jasper
Ridge, CA.

The spectral detectability of subpixel material in an image depends upon its
spectral contrast with background materials, its relative abundance, instrumental noise,
and local atmospheric/topographic effects (Sabol et al. 1992). Spectral mixture analysis
was used in this study to identify spectral endmembers and determine their spectral
fractions for each image pixel. The minimal requirements for potentially physically
meaningful fractions are: 1) the fractions are between 0 and 1, and 2) the residuals are
low (within the level of system noise) (Smith et al., 1985; Adams et al., 1989). However,
Smith et al. [1990] noted that the band residuals decrease as the number of endmembers
increases, even when the additional endmembers are not actually present in the image. In
this case, the endmember fractions may or may not be realistic, depending on the spectra
involved. Additionally, Sabol et al. [1992] noted that the spectral detectability of targets
generally decreases as the number of endmembers increases. Therefore, fractions are
more physically meaningful , and detectability is enhanced, when the image is modeled
using the minimal number of endmembers that result in realistic fractions and low
residuals.

In past applications of spectral mixture analysis, only a few endmembers
(usually fewer than five) have been used to model a large scene to preclude inclusion of
extraneous endmembers. This, however, does not take into account the spectral
variability of the surface components that each endmember represents. For example,
earlier images of Jasper Ridge have been modeled as mixtures of a soil, green vegetation,
senescent vegetation, and shade endmembers (Roberts et al. [1990, 1991], Sabol et al.
[1991]). These endmembers, in fact, are "representative” of a type of surface component.
In this study, to allow for spectral variability of the components in the scene, a number of
spectra representing the range of spectral variation of each component were included in
the spectral library and organized as classes. The library (466 spectra) included a green
vegetation class, as well as soil, senescent vegetation and shade classes. To find the
appropriate endmembers, each pixel was modeled as mixtures of 2 and 3 components,
allowing a maximum of one spectrum from each class. The endmembers for each pixel
were indicated when the fewest number of endmembers was needed to have realistic
fractions and low residuals.

The resultant endmembers were then used to determine the best-case detection
threshold of each component (excluding shade). A general outline of the analysis
follows:

1) the images were calibrated to reflectance using the methods described by Roberts et
al. [1991],
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2) the images were modeled as mixtures of endmember groups (described above),

3) the signal-to-noise ratios for each image were determined using the method described
by Sabol et al.[1991],

4) the detection thresholds for the different soil and vegetation spectra in the grasslands
were determined for each combination of endmembers using the methods described
Sabol et al.[1990, 1992).

5) the fractions and detection thresholds from the two data sets were then compared to

ascertain actual changes in surface composition and changes due to other effects such
as the change in solar illumination angle.

Two general types of shade were found in the image: photometric shade and
vegetation shade. Photometric shade, spectrally flat (near zero reflectance) at all but the
lower wavelengths, typically occurred in areas where the fraction of green vegetation was
minimal (i.e. senescent grasslands, roads, lakes), while vegetation shade , spectrally
similar to green vegetation, but with greatly reduced reflectance (maximum reflectance of
~30 %), was a prominent endmember in areas containing significant fractions of green
vegetation. Roberts et al. (1991) showed that vegetation-shade is caused by the
transmission and scattering of incident radiation through the leaves, and by solving for
the shade component, the spectral signature of vegetation-shade for a given area can be
determined. To get a more appropriate shade spectrum and to account for the non-
linearities in spectral mixing due to green vegetation, we used the methods described by
Roberts et al. [1991] to determine the vegetation-shade endmember for the several areas
in the image. These spectra were incorporated into the detectability analysis.

A preliminary analysis indicates that for much of the July and October images,
2 image-endmember combinations yielded the most reasonable models. Although the
fractions and endmembers are similar between the two images, some subtle differences
were observed. For example, a portion of the grasslands at the crest of Jasper Ridge were
modeled as a mixture of vegetation shade and senescent vegetation in the July image.
This is interpreted as short, shadowed green grass among the taller dry grass. In the
October image, the same area was modeled as a mixture of photometric shade and
senescent vegetation, indicating that the green grass in the July image had senesced.
The spectral signature of the exposed soil in this area was not included as an endmember
because it was mimicked by mixtures of the endmembers. Therefore, band residuals
were still necessary for detection of materials that were spectrally unique at only a few
bands.

By allowing each pixel to be modeled by the most appropriate endmembers in
the spectral library, the spectral variability of each surface component throughout an
image can be more closely approximated in image analysis. The detectability of any
endmember in a pixel, therefore, varied across the image. Soil, for example, which can
be represented by a different spectrum in other image pixels, had a different detection
threshold from pixel to pixel due to: 1) varying fractions, and 2) varying background
endmembers. This data, when combined with spectral mixture analysis in evaluating
temporal data, provides a methodology for separating actual changes in surface
composition from uncertainties due to system noise and local temporal changes, such as
change in the angle of solar illumination.
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